Sensors, Signals, and Images in Medical Informatics: Progress and Evaluation

Findings from the Yearbook 2008 Section on Sensors, Signals, and Imaging Informatics

H. Müller, Managing Editor for the IMIA Yearbook Section on Sensors, Signals, and Imaging Informatics
Medical Informatics, University Hospitals and University of Geneva & Business Information Systems, University of Applied Sciences Sierre, Switzerland

Introduction

The field of sensors, signals, and imaging in medical informatics comprises an very large domain of research. A selection of representative articles for this field is therefore difficult, the number of journals and the variety of topics being hard for anyone to know globally. The selection process for the articles goes in line with selections in previous years of the Yearbook of Medical Informatics [6,7] and particularly the sections on sensors, signals, and imaging informatics [1,10]. Whereas the 2007 Yearbook contained several articles on sensors from tissue simulation [12], to wearable sensors [9] and brain-computer interfaces [8,11], the selection for 2008 contains more articles from the imaging domain [3,4]. Research in the fields of brain-computer interfaces [2] and wearable sensors [5] remain strong and active areas of research. Several articles in 2008 are from similar domains as the selection in 2007, though, showing the importance and high research quality in the field. Brain computer interfaces remain important [2] and will most likely be so for a few years to come. Wearable sensors [5] are equally still state of the art and the impact on clinical routine is likely to become increasingly visible.

Best Paper Selection

To select the papers for this Yearbook, twelve journals treating subjects concerning sensors, signals and images were analysed for the year 2007. The abstracts of all the articles were read and a selection was performed through an international peer-review process, taking into account the originality of the article, the impact of the topic, and the general interest in the field of medical informatics for the topic to avoid articles that are too specialist and of interest to only few persons. Besides the journals, a research in Pubmed was performed containing keywords frequent for imaging, signals, and sensors such as modalities (x-ray, MRI, etc.) or frequently used techniques. In a first step around 100 articles were identified based on the titles and abstracts, and for the final review process this selection was reduced to 16 papers that were reviewed by three external reviewers, the two Yearbook editors and the section editor. The final selection based on the review scores represents the three application domains sensors [5], signals [2], and imaging [3,4] as well as the various continents from North [4] and South America [3], to Europe [2], and Asia [5]. The first paper [2] describes the advances in brain-computer interfaces. Lovo et al.
Conclusions and Outlook

Four articles representing main research directions in sensors, signals, and imaging informatics are presented in this section. The articles show the variety of research in this wide field and also the important impact that these techniques can have in clinical practice. Sensor, signal, and imaging informatics start to be evaluated on real world data sets and become increasingly used in clinical practice. Future Yearbooks will show whether all these techniques will become integrated with methods from other sections in this Yearbook such as bioinformatics, clinical data management, knowledge discovery, and decision support. Only such integration can lead to a real impact of this exciting research field.

Acknowledgement

Many thanks to Martina Hutter for her availability throughout the paper selection and article preparation process and to all the reviewers.

References


Appendix: Content Summaries of Selected Best Papers for the IMIA Yearbook 2008, Section Sensors, Signals and Imaging Informatics

Friman O, Volosyak I, Graser A

Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces


Correspondence to:
Prof. Dr. Henning Müller
University & Hospitals of Geneva
Medical Informatics and
University of Applied Sciences
Tecnark 3
3960 Sierre, Switzerland
Tel: +41 27 606 9012
Fax: +41 27 606 9000
E-mail: henning.mueller@hevs.ch

Downloaded from imia.schattauer.de on 2017-12-01 | IP: 54.70.40.11
For personal or educational use only. No other uses without permission. All rights reserved.

IMIA Yearbook of Medical Informatics 2008

65

Sensors, Signals, and Images in Medical Informatics: Progress and Evaluation

Table 1 Best paper selection of articles for the IMIA Yearbook of Medical Informatics 2008 in the section ‘Sensors, Signals, and Imaging Informatics’. The articles are listed in alphabetical order of the first author’s surname.

<table>
<thead>
<tr>
<th>Section</th>
<th>Sensors, Signals, and Imaging Informatics</th>
</tr>
</thead>
</table>
Brain-computer interfaces have been a hot topic in signal processing over the past five years and first systems start having very good results for simple tasks. Frieman et al. propose a new method for brain computer interfaces with several EEG (electroencephalogram) recordings. A challenge is to cancel out the noise, reach a high detection rate, and at the same time have a very quick processing speed. An evaluation with ten subjects was performed to validate the approaches. Several approaches were implemented and evaluated, with the best leading to a high detection rate of 84%, showing the progress in brain computer interfaces over the past years.

Lovo EE, Quintana JC, Puebla MC, Torrealba G, Santos JL, Lira IH, Tagle P
A novel, inexpensive method of image coregistration for applications in image-guided surgery using augmented reality
Neurosurgery 2007; Apr; 60(4 Suppl 2):366-71; discussion 371-2

Lovo et al. present an article on image-guided surgery using virtual reality approaches. The particularity of their approach is the use of open source software and simple digital cameras instead of the often extremely expensive virtual reality equipment used in many industrialised countries. 3D images from MRI scans are co-registered with intra-operative ultrasound and simple photographs to help the surgeons visualise the information. Concrete experiments were performed and evaluated on eight patients and directly in clinical practice. The results show that the technique is well adapted and can be used in a large variety of settings, without the use of important financial resources.

Reinertsen I, Lindseth F, Unsgaard G, Collins DL
Validation of vessel-based registration for correction of brain-shift
Med Image Anal 2007; 11(4):374-88

Brain shift after opening the skull for an operation is a well-known and often studied problem potentially leading to serious errors during the operation due to shifted tissue. Reinertsen et al. present a new approach to detecting and correcting brain shift with using pre-operative MRI, and then simple ultrasound during the operation to identify potentially shifted brain parts. In both imaging modalities vessels are segmented and then matched for better registration of the modalities during the operation. Validation was first performed with simulated datasets and then a phantom study very close to clinical reality showing very good mapping results.

Zheng JW, Zhang ZB, Wu TH, Zhang Y
A wearable mobile health care system supporting real-time diagnosis and alarm
Med Biol Eng Comput 2007; Sep; 45(9):877-85

Zheng et al. describe a wearable monitoring system acquiring ECG data and respiratory parameters from a patient. The acquisition is directly integrated in the fabric of the clothes. Communication of the fabric integrated system is enabled via wireless short-range transmissions towards a processing unit. The processing unit itself is connected via cell phone technology to a medical institution. Further sensors of the system include an acceleration sensor to detect falls and long periods without any motion, with the goal to quickly detect abnormal situations. A GPS unit allows the clinicians to locate the person and give either advice via phone or send an ambulance in case of an emergency. Application area of the system is mainly the constant supervision of elderly and high-risk patients with vascular diseases.