Clinical Research Informatics: Survey of Recent Advances and Trends in a Maturing Field

P. J. Embi
The Ohio State University, Columbus, OH, USA

Summary

Objectives: To provide a survey of the field of clinical research informatics (CRI), focusing in particular on significant developments over the past 3 years and the insights they provide about the progress and state of the field.

Methods: An iterative “scoping review” of the literature published in scientific journals and conference proceedings that are relevant to CRI, from late 2009 to early 2013.

Results: 212 articles were identified, and 64 were selected to illustrate recent advances in the field. Based on those, six categories of CRI activity were identified: Data and Knowledge Management, Discovery and Standards, Clinical Data Re-use for Research, Researcher Support and Resources, Participant Recruitment, Patients/Consumers and CRI; Policy, Regulatory and Fiscal Matters.

Conclusions: This survey demonstrates that the field of CRI has matured and is now well established. The ongoing work is essential to overcome many of the challenges the clinical research enterprise is facing and more work is needed. Even as work continues to establish necessary infrastructure, methods, and best practices, CRI researchers should strive for more rigorous study designs to evaluate the impacts of the work in the field. There is little doubt that the field is poised for rapid growth, and that the CRI literature will continue to reflect that growth in years to come.

Keywords
Clinical research; medical informatics; clinical trials; translational science; review literature as topic

Yearb Med Inform 2013:178-84

Introduction

Clinical research is critical to the advancement of medical science and public health. Conducting such research is a complex resource and information-intensive endeavor involving multiple actors, workflows, processes, and information resources. The need to accelerate clinical research and to solve the information-related problems inherent to it have brought increased attention to a field at the intersection of clinical research and biomedical informatics throughout governmental, academic, and private sectors [1-8]. The result is the emergence and relatively rapid expansion of a biomedical informatics sub-discipline focused on clinical research, referred to as Clinical Research Informatics (CRI). As the field has matured, work has been done to define its scope and the range of challenges and opportunities it addresses [9].

This maturity of CRI has resulted in a steady increase in work across the CRI space, and such efforts have begun to result in significant improvements in the quality and efficiency of clinical research [5, 10]. Indeed, recent years have seen the emergence of national and international research and policy efforts to foster advances in CRI. CRI professionals have addressed the inherent challenges and opportunities that motivate the sub-discipline, including those in particular areas of research such as Cancer [2, 8, 11, 12] and more broadly those focused on reengineering the research enterprise to accelerate such science. Examples include initiatives such as the National Institutes of Health’s (NIH) Clinical and Translational Science Award (CTSA) (3, 4), as well as grants from institutes and agencies such as the National Library of Medicine and the Agency for Healthcare Research & Quality (AHRQ) to drive advances in research data methods and resources for CRI-related works, including comparative effectiveness and health services research [13-15].

In addition to initiatives focused on advancing the science and practice of CRI, investments in Health information technology (IT) adoption spurred on by incentives and “meaningful use” of EHRs are also playing a role in CRI advances, if less directly. While initially primarily focused on improving patient care, interoperable EHRs and improvements in standards-based data sharing hold great promise for the streamlined collection and reuse of data and information from clinical care to improve public health and research – to create the learning health system [16].

Just as biomedical informatics approaches and resources are essential to realizing the potential of such systems to improve clinical care, so are the methods, theories and tools of the CRI domain critical to realizing the potential of such systems to enable discovery through acceleration and enhancement of clinical research. As a result, advances in CRI continue to accelerate.

One marker that CRI has emerged as a distinct and relevant domain is the growth of a significant literature focused on this topic. Indeed, publications describing advances in the field are increasing and serve as evidence that the field is maturing. With that in mind, the sections that follow are an attempt to represent some of the excellent work in the CRI field over the past few years. However, it should be noted that any attempts to survey this field would fall short of providing a comprehensive view. Instead my intent is to present the reader with exemplary cases and an overview of this important and rapidly advancing domain of biomedical informatics.
Methods

Searching for relevant manuscripts in a relatively new domain wherein subject headings and keywords are not well established requires an iterative approach, sometimes referred to as a *scoping review* [17]. In this case, a structured literature search was augmented with a snowballing method involving reviewing citations in identified articles as well as articles recommended by other experts in the domain to whom the author reached out for recommendations.

The literature review for this survey of “recent” activity in the CRI domain involved combinations of MESH terms and keywords as well as date restrictions, with the goal of identifying relevant articles that covered a range of issues actively being studied. For the literature review, we utilized the following query in PubMed: (““Biomedical Research”[Mesh] NOT “Genetic Research”[Mesh]) NOT (“Translational Research”[Mesh] AND “Informatics”[Mesh] AND “2009/01/01”[PDat] : “2013/02/01”[PDat]). At that time, this search returned 298 articles, among which 101 were judged by the author to be CRI-relevant. In addition, another 111 articles were identified via a combination of recommendations by colleagues with expertise in CRI; by reviewing references in identified articles; and via ad hoc searches using keywords such as: “Clinical Trials”; “Clinical Research”; “Informatics”; “Translational”; “Data Warehouse”; “Recruitment”.

Again, this is not a systematic review, so the articles selected merely represent the author’s attempt to highlight relevant and/or representative recent works in CRI, and should not be considered an exhaustive list of the field’s relevant literature. Also worth noting is that this review only includes the field of “clinical research informatics” but not the closely related, overlapping, but distinct sub-domain of translational bioinformatics.

Upon identifying the articles via the above-described approach, the author categorized them into descriptive areas of activity. Under each category, some of the relevant articles are highlighted. The article concludes with some notable CRI-related events and a brief discussion of future directions.

Results

Based on the methodology described above, 212 articles were identified, and 64 were selected to illustrate recent advances in the field. Based on these articles, several categories of CRI activity can be identified:

- Data and Knowledge Management, Discovery and Standards
- Clinical Data Re-Use for Research
- Researcher Support and Resources
- Participant Recruitment
- Patients/Consumers and CRI
- Policy, Regulatory and Fiscal Matters

Data and Knowledge Management, Discovery, and Standards

Data and knowledge management, including data warehousing, has become central to many activities essential to the clinical research process such as hypothesis generation, protocol development and feasibility analyses, and data extraction for analytical and reporting purposes. Biomedical research has benefited from the foundational work in data warehousing from other sectors, and has built upon that work with developments and methods focused on enabling data storage, retrieval and integration for clinical and translational science. One example is the NIH-supported “informatics for integrating biology and the bedside” platform, also known as i2b2 [18].

Created for cohort finding, easy querying for a range of research uses, and easy data-mart creation, the i2b2 platform has been adopted by over 60 centers worldwide [19], is extensible to enable integration of tools for analysis and other research activities [20], and offers the capability to conduct queries and identify cohorts across instances for inter-institutional research [21, 22]. Infrastructural developments like this are essential resources for enabling the clinical and translational research advances that concern CRI.

Similar to clinical data warehousing efforts, activities are also underway to enable the storage, discovery, and sharing of biospecimens and tissues relevant to the conduct of clinical and translational sciences. For instance, as part of the National Cancer Institute’s caBIG program, Crowley and colleagues described the development of a grid-based Cancer Tissue Information Extraction System (caTIES) for coding surgical pathology reports and retrieving tissue specimens [23]. Implemented at several cancer centers across the US, caTIES leverages existing NLP methods, caGrid computing and security frameworks, and query visualization methods to enable data sharing, graphically-driven concept-based text mining, and a regulatory and security model for multi-center collaboration.

Management and discovery of data and knowledge derived from clinical research activities themselves also represent an important area of CRI activity. One area of activity involves efforts to ensure clinical trials are systematically registered in accessible databases like clinicaltrials.gov [14]. Leveraging such a system, Tasneem and colleagues demonstrated the utility of a resource they designed to enable aggregated analyses, organized by specialties, of content registered in clinicaltrials.gov [24]. Of course, the ability to retrieve, review and analyze the actual results of clinical trials holds great promise to improve their veracity, transparency, and value to human health. To that end, Sim and colleagues reported on approaches to enable the “human studies database project” by developing the ontology of clinical research (OCRe) that facilitates federated, machine-readable, study design and results information for interventional and observational studies [25]. Such CRI resources Can enable large-scale data mining, synthesis and re-analysis of trial data, thereby greatly enhancing the value of individual studies for biomedical advances.

Fundamental to this category and to the following ones are the myriad initiatives related to the development, application and adherence to standards. Standards efforts in CRI include the development of technical standards, data standards and ontologies, and other clinical research standards, many of which are essential to the management of data and knowledge in and across repositories [26]. Standards efforts related to the capture, management and exchange of clinical research data include those led by groups such as the Clinical Data Interchange Standards Consortium (CDISC), HL7, the FDA [27]. Among such efforts are the Biomedical Research Integrated Domain Model (BRIDG), the Integrating Healthcare Enterprise (IHE)
initiatives, and others concerned with different aspects of facilitating research processes using healthcare systems [28, 29]. Other efforts relate to the development of content standards for the transmission of trial information to the FDA (i.e. the Study Data Tabulation Model) [27], that enable data exchange between clinical and research information systems (i.e. the Operational Data Model) [30], and representations for eligibility criteria [31]. Still other examples involve the development of standards for sharing data about non-clinical resources, such as the development by Tenenbaum and colleagues of the “Biomedical Research Ontology” (BRO) to enable the semantic search and discovery of research resources across sites [32]. There are many more such efforts ongoing, and several others have written recently about the status of advances, remaining challenges, and the opportunities they present in CRI [33-37].

Clinical Data Re-Use for Research

As mentioned above, leveraging the ever-increasing collection of digitized clinical data in EHRs for the purpose of systematic learning, evidence generation, and healthcare improvement is a goal that our healthcare system must reach. Informatics activities are central to such data reuse, but there are many challenges both technical and socio-organizational that must be overcome in order to realize the potential benefits, and there are many ways to re-use clinical data for research.

As noted in the previous section, there are ongoing efforts to develop standards and resources for re-using clinical data in research studies. For example, the Strategic Health IT Advance Research Projects (SHARP) Program includes initiatives (SHARPn) specifically focused on extending the use of EHR data for “secondary” purposes such as health outcomes improvement, biomedical research, and epidemiologic monitoring of the nation’s health, all via the development of open-source services and platforms [38]. Another set of efforts involves data re-use for drug safety monitoring and surveillance, such as the FDA’s Sentinel system [39] and the Adverse Drug Events Spontaneous Triggered Event Reporting (ASTER) study [23]. Still others have leveraged the aforementioned IHE initiatives to enable single-source data entry in the clinical setting through the integration of “Retrieve Form for Data Capture” (RFD) with the IHE “Clinical Research Document” (CRD) to repurpose EHR data for research-specific electronic care report forms (eCRF) [40] and more general clinical research uses [28].

A key data reuse activity for research involves identifying patient cohorts from EHR-derived data sets, for recruitment (which is addressed in greater detail below) as well as for other research processes, but this can be challenging when key data are buried in narrative text. In their 2012 article, Carroll and colleagues demonstrated that their phenotype algorithm to identify patients with rheumatoid arthritis from EHRs was effective when ported to other institutions with distinct EHR systems [41]. By comparing the results of their algorithm with the gold-standard of physicians’ manual review of charts to identify the patients, they were able to show that NLP approaches used against EHR-derived data performed nearly as well, with AUCs between 92% and 95% vs. 97%, respectively. Retraining the logistic regression model improved results, and all were shown to be better than billing code count thresholds, demonstrating that electronic phenotyping algorithms can allow for rapid identification of certain populations across sites with different EHRs, NLP systems, and little retraining. Indeed, leveraging EHR data to identify specific patient cohorts and phenotypic representations has also proven to be effective in other recent studies at the intersection of EHR and genomic data – findings that have implications for CRI as well as translational bioinformatics [42-44].

Despite those promising findings, recent studies in the US, Europe and Africa have also shown that while certainly useful for identifying certain cohorts and even monitoring outcomes in certain conditions [45], data primarily collected for clinical purposes may not always be optimal for research uses unless attention is given during its collection with such an end in mind [45-47]. For instance, when assessing whether quality measurements for performance monitoring can be automatically derived from EHRs, Parsons and colleagues found some limitations [48]. Based on their chart reviews of over 4000 patients across 57 practices, they found that automated EHR-derived quality measures underestimated actual performance, documentation varied between sites, and results often did not reflect the accurate number of patients who actually got preventive measures. Other recent studies have similarly demonstrated that data collected for a general clinical care purpose may not be of adequate quality for research when compared to that systematically collected in a dedicated registry for a given patient population [46]. Even when evaluating accuracy for non-research reporting needs, such as automated quality reporting for “meaningful use”, significant variability is noted [49], emphasizing challenges and the need for further CRI development to ensure effective data re-use.

Not surprisingly, efforts to address issues about streamlined collection, accuracy and completeness of clinical data for reuse purposes represent another active area of CRI research [50]. In one notable study, Wright and colleagues reported on their use of a clinical alert system using inference rules to notify providers of undocumented problems in an EHR problem list, and showed that such an approach can indeed improve problem documentation [51].

Researcher Support & Resources

Many ongoing efforts in CRI revolve around the development of resources for use by researchers as they conduct their day-to-day research activities. A recent survey of academic health centers in the US reveals that there has been progress regarding key research resource availability at the institutional level, as compared to earlier surveys dating back five to seven years. Significant progress in four main areas revealed increases in: (i) the use of IT in research compliance, such as conflicts of interest, research budgeting, and reporting to the Institutional Review Board (IRB); (ii) the use of IT for electronic data capture (EDC) requirements related to clinical studies and trials of different size; (iii) the use of data repositories for the repurposing of clinical care data for research; and, (iv) the IT infrastructure needs and support for research collaboration and communication [52]. The authors attributed this to the availability of more robust commercial and “open-source”
solutions, coupled with new research initiatives (e.g., CTSA) and regulatory requirements necessitating such infrastructure.

Among specific resources that have taken hold are those enabling coordination of research support requests at an institutional level. The StarBRITE system at Vanderbilt University is one such system [39]. It is a homegrown content management system that provides a single, integrated Web-based portal for investigator to request support while also serving the administrative needs of the institution. Such systems thereby have the potential to improve how institutions “care for” and “monitor” investigators and the research enterprise. By leveraging such researcher portals, approaches have also been developed to help researchers navigate the regulatory and organizational processes that often slow down scientific progress [53]. CRI efforts have also been reported on the knowledge engineering approaches specific to informing the design and enhancing the usability of such researcher support portals [54].

Another basic research activity supported by recent CRI developments is related to research data collection. The Research Electronic Data Capture (REDCap) system is a prime example of an easy-to-use, metadata-driven methodology and workflow process that provides an easy to manage and use electronic data capture (EDC) solution for common research needs [29]. Now in use at over 200 sites internationally, and including over 9200 studies and over 18,000 end-users, REDCap has become a standard tool for many of the EDC needs of researchers across the globe. Where implemented it has effectively diminished the one-off database development needs that used to consume resources, present security risks, and slow scientific progress. Building upon the REDCap foundation, collaborators have even extended the system to areas where EDC has traditionally been challenged. By combining REDCap tools and a custom data synchronization application, Borlawsky and colleagues enabled distributed data collection in rural Appalachian sites with limited Internet connectivity [55].

While stand-alone EDC systems are and will continue to be essential, data collection from EHRs is also increasing, particularly as the lines between clinical care and research become blurred. As such, another area of CRI activity relates to the development of research registries in EHR systems. Indeed, even as some research demonstrates the superiority of registries over standard clinical data collection for certain uses [46], other studies demonstrate that registry data can even be equal to that collected during phase III RCTs, potentially obviating the need for some clinical trials, if properly designed and used [56].

Another resource that is becoming common for research management is the Clinical Trial Management System, sometimes referred to as the Clinical Research Management System (CRMS). While there are many such systems in the vendor-space, some have recently been the subject of CRI research. One called TRITON, integrates research management components from the cTissue suite with CRMS functionalities to provide an integrative platform where researchers can manage their research from tissues to research participant management [57]. As CRMS use expands, next steps will include their integration or at least connectivity with EHRs and specimen repositories for more robust and cohesive research management.

As research support systems take hold and investments continue to grow, so will the demand to demonstrate their utility and cost-effectiveness. Such assessments will require new ways to track and evaluate the evolution of research activities and collaborations across multiple scales, and some CRI investigators are beginning to establish baseline assessments through the use of network analysis approaches across an institution [58]. These and other approaches can be expected to increase as CRI advances continue.

Participant Recruitment

The identification and recruitment of participants for clinical research is well recognized as a major impediment to the efficient conduct of research studies. The vast majority of clinical trials suffer from significant delays in achieving enrollment targets, and this in turn delays medical advances and is costly [59]. As such, informatics approaches to overcome the issues that plague recruitment have long been an area of CRI activity [60, 61]. Recent work has built upon prior work in a variety of ways.

Over the period of this review, there have been several intervention studies to overcome recruitment delays. Dugas and colleagues studied a form of EHR-driven recruitment alerts in a German hospital, and demonstrated that daily email alerts sent to clinicians with the list of potentially eligible subjects yielded 329 enrollments for seven distinct trials over a 10-month period [38]. In another study, Herscevich and colleagues addressed the issue of patient recruitment to studies of time-sensitive conditions (i.e. septic shock). By automatically paging a trial coordinator when EHR features indicated the patient was developing shock, they effectively doubled enrollment [62]. Weng and colleagues evaluated the utility of using a registry versus a data warehouse to recruit participants for a diabetes clinical trial [63]. They found that even while each option had its own benefits and challenges, the use of a data warehouse yielded more accuracy (31% vs. 6.6%) and higher participant recruitment (30 vs. 14) in a shorter time period (59 vs. 74 working days) than did the registry.

While alert-based approaches appear to show great promise to enhance recruitment in a variety of settings, the issue of alert fatigue often arises as a concern. In a study published last year, alert fatigue was evaluated as part of a randomized controlled trial of the clinical trial alert approach [64]. Alert fatigue did appear to occur as response rates to the clinical trial alert declined gradually over time, but they remained at a relatively high level, 36% even after 36 weeks of exposure to alerts, suggesting it wasn’t as severe as some had worried.

In addition to the ongoing work to leverage EHRs for recruitment, other systems designed to accelerate participant identification, matching, and enrollment have also been the subject of CRI activity. ResearchMatch, a national registry for volunteers interested in learning about research opportunities is one such solution. With over 30,000 volunteers, in use by 76 institutions, and with about a 20% acceptance rate by registrants being contacted for a study, this registry is a major resource in the CRI domain [65]. Other resources dedicated to improving recruitment rates include some data-driven cohort matching systems within institutions [66, 67].

As many studies designed to enhance recruitment have shown, one of the challenges to leveraging information systems for alerting is the problem of precisely and accurately matching patient data to clinical
trial eligibility criteria. One reason is that eligibility criteria are often not written to be computer-interpretable, a matter covered in detail in a review of the topic in 2010 [68]. Systems are now being developed and tested to extract eligibility criteria and represent them in computer-interpretable formats to improve matching [69], even as other approaches to improve computability of criteria during the protocol authoring process are ongoing.

Patients/Consumers and CRI
The role of patients and/or consumers of healthcare in research has traditionally been limited to a relatively passive one whereby the “subject” is often a willing participant in a process that is largely controlled by the research professionals. This has recently changed. First, more attention is being paid to the informed consent process, a key part of traditional patient engagement that is sometimes not optimized for all participants. Recent studies have applied more scrutiny to the often poor readability of informed consent documents and to the use of technologies to improve informativeness [70, 71].

Further engagement of patients is taking place through the use of increasingly ubiquitous mobile technologies to collect data in ways that are more appealing and appear to be at least as accurate as traditional methods [72]. In one recent study, patients were engaged to contribute information regarding their medications and side-effects via a personal health record, thereby correcting the underlying clinical database from which research activities such as hypothesis generation or even participant eligibility might be determined [73].

Even more direct involvement in the research process by patients and/or consumers of healthcare is taking place. Disease-specific social networks are leading to community-initiated studies, and the fact that the patient community drives such studies is also leading to more rapid accruals and study completion [70, 71].

Policy, Regulatory and Fiscal Matters
The research enterprise and individual research studies exist in the often complex world alongside clinical care. As such, the realities of clinical care, privacy concerns, and limited resources are often positioned opposite to the needs of researchers, and research enterprise more broadly. In addition, regulatory issues related specifically to research, such as adherence to FDA guidance on the use of computer systems for research data management and federal regulations like the 21 CFR Part 11 rule, must be addressed and therefore drive many ongoing CRI efforts.

Essential to the functioning of the research enterprise is abiding by the ethical and regulatory tenets of society. A major one in the case of CRI relates to safeguarding data privacy even while enabling discovery and advancing science. Recent work by Malin and colleagues exemplifies work to provide the CRI community approaches to address some of the pressing privacy issues related to data sharing [74]. However, as the Institute of Medicine recently (IOM) pointed out, there have long been major flaws with existing privacy regulations, including inconsistencies between the US HIPAA privacy rule and the so-called ‘common rule’ governing aspects of research, variable interpretations across organizations, and inadequately staffed IRBs with limited ability to effectively interpret the rules. These issues lead in many cases to overly conservative decisions that impede research progress without enhancing privacy, and the IOM has called to rework the privacy rule so that, “Rather than seeing privacy and research as conflicting values, policy makers can improve both”[30]. The recent release in 2013 of revisions to the HIPAA privacy rule appears to address some of these issues.

Another important topic relates to fiscal matters that impact upon clinical research and hence the informatics endeavors to support them. On the one hand, there are remarkable investments being made in the US to accelerate health IT adoption and meaningful use with an eye toward creating a “learning health system” [16]. In addition, there are major investments ongoing to advance patient-centered outcomes research, comparative effectiveness research, and pragmatic clinical trials, all of which expect an information infrastructure will exist to enable such activities [75-77]. On the other hand, the clinicians and healthcare providers who are expected to perform high-quality data collection for such research are not compensated for performing such activities. As a result, some in the CRI community have called for approaches to encourage clinician participation in research activities. One proposal argued for a “relative research unit” counterpart to the “relative value unit” upon which clinical care is measured and compensated, to similarly measure and reward the additional work required to advance research alongside clinical care [78].

Overall, there are myriad policies, regulations, and fiscal matters that currently impede our collective ability to advance work at the intersection of biomedical informatics and clinical research, and these must be addressed as some have begun to call for [79]. Work must also continue to advance foundational research in the area of CRI to enable the innovations needed in clinical and translational science [80-82]. In addition, work must begin to train a new generation of clinicians and healthcare leaders in biomedical informatics, with CRI as a central component, even as more CRI-focused informaticians are also needed [83].

Conclusion
As this survey demonstrates, the field of CRI is broad and rapidly advancing. Indeed, there are many other examples and categories of CRI activity that were not possible to adequately cover in this brief survey. There are also other signs that the field is maturing, including the recent publication of the first textbook dedicated to CRI [84], the establishment and growth of an academic meeting dedicated to the field (85), and journal special issues dedicated to work in CRI [86, 87].

Advances across a range of data, knowledge, and information efforts focused on clinical research are becoming common across the research enterprise landscape. Even still, rapid acceleration of science via informatics approaches is not yet commonplace, and CRI interventions still appear too often as anecdotes or quasi-experimental studies, with methodologically rigorous studies (e.g. randomized, controlled studies) of CRI interventions remaining rare. As the field matures, more research on CRI efforts will be needed to demonstrate the successes and value of CRI interventions.
Given the rapid advances in biomedical discoveries, the growth of the human population, and the escalating costs of health care, the need to accelerate and improve clinical research is essential. As such, the field of CRI has emerged as critical to solving many of the current challenges faced by clinical researchers and the research enterprise. There is little doubt the field is poised for continued and rapid growth, and that growth will be reflected in the biomedical informatics literature in the years to come.

References

20.3(79):79-91.
80. DeMets DL, Califf RM. A historical perspective on clinical trials innovation and leadership: where do we from here? JAMA 2011 Mar 16;305(7);713-4.

Correspondence to:
Peter J. Embi, MD, MS, FACP, FACMI
The Ohio State University
3190 Graves Hall
333 W. 10th Ave
Columbus, OH 43210, USA
Tel: +1 614 292 4778
Fax: +1 614 688 6600
E-mail: peter.embi@osumc.edu